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a b s t r a c t 

This work applies a novel geometric criterion for global stability of nonlinear autonomous 

differential equations generalized by Lu and Lu (2017) to establish global threshold dy- 

namics for several SVEIS epidemic models with temporary immunity, incorporating satu- 

rated incidence and nonmonotone incidence with psychological effect, and an SVEIS model 

with saturated incidence and partial temporary immunity. Incidentally, global stability for 

the SVEIS models with saturated incidence in Cai and Li (2009), Sahu and Dhar (2012) is 

completely solved. Furthermore, employing the DEDiscover simulation tool, the parame- 

ters in Sahu and Dhar’model are estimated with the 2009–2010 pandemic H1N1 case data 

in Hong Kong China, and it is validated that the vaccination programme indeed avoided 

subsequent potential outbreak waves of the pandemic. Finally, global sensitivity analysis 

reveals that multiple control measures should be utilized jointly to cut down the peak of 

the waves dramatically and delay the arrival of the second wave, thereinto timely vaccina- 

tion is particularly effective. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Immunization is believed to be one of the most successful and cost-effective public health interventions [1] , for instance

in worldwide eradication of small-pox and sharp reduction in the annual morbidity of most other vaccine-preventable dis-

eases, such as polio, measles, hepatitis B, yellow fever [2] , cholera [3] , mumps [4] and influenza [5–8] . Currently, immu-

nization saves 2–3 million lives yearly and prevents debilitating illness, disability and death from the diseases. However,

it is estimated that 19.4 million infants failed to be reached with routine immunization services in 2018 [1] . Due to low

vaccination rate, the 2017–2018 seasonal influenza caused estimated 45 million illnesses, 21 million medical visits, 810,0 0 0

hospitalizations and 61,0 0 0 deaths in the United States [9] , and now burden is not optimistic. Fortunately, timely vaccination

programme played a core part in mitigating the pandemic (H1N1) 2009 [8] (pH1N1). Take Hong Kong China for instance: the

subsequent potential waves of the pandemic [10] might be effectively mitigated with the launch of the pH1N1 vaccination

programme for several priority groups [11] , although the first wave failed to be timely contained due to the unavailability

of the vaccine against the novel influenza strain [12] (see Fig. 1 ). 
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Fig. 1. Epidemic curve of the reported pH1N1 cases in Hong Kong China, 2009–2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Admittedly, immunization may not be once and for all because vaccine-induced immunity is generally temporary, and

so are disease-acquired and natural immunity, which becomes one of major obstacles eliminating such these infectious

diseases. Vaccines rarely provide the recipients with almost life-long immunity against re-infection. After being infected,

susceptible individuals first become exposed but not infectious and then become infectious. The successfully recovered in-

dividuals acquire disease-induced immunity. Additionally, by virtue of natural immunity [13–15] , a part of exposed individ-

uals fail to develop disease but acquire temporary immunity. For example, the efficient innate immunity protects more than

90% of individuals infected with Mycobacterium tuberculosis [14] . A recent study [15] has showed that, similar to seasonal

influenza, most infection (up to 75%) of the pandemic H1N1 strain was asymptomatic and gave the infected individuals

temporary immunity. 

The nonlinear epidemic dynamical models incorporating both temporary immunity and latency such as SEIRS, SVEIS

models in [16–19] , have been developed to better understand the transmission dynamical behaviors of infectious diseases

qualitatively and quantitatively. The exploitation of their global asymptotic stability has been of great interest and challeng-

ing to researchers in infectious disease modelling aimed at finding out the effective control interventions, seeing [16–19] .

While the Lyapunov function methods may become unsuitable to prove their global stability, the classical geometric ap-

proach for nonlinear autonomous differential equations based on additive compound matrix theory developed by Li and

Muldowney [20–22] has been succeed in applying to these epidemic models [16,17,20–22] . For example, Cai and Li [16] pro-

posed the following nonlinear SEIV epidemic model with temporary immunity: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= ( 1 − p ) � − βSI 

ϕ ( I ) 
− μS + ωV, 

dE 

dt 
= 

βSI 

ϕ ( I ) 
− ( μ + σ ) E, 

dI 

dt 
= σE − ( μ + γ ) I, 

dV 

dt 
= p� + γ I − ( μ + ω ) V, 

(1.1) 

where the total population N consists of susceptible ( S ), latent ( E ), infectious ( I ) and vaccinated-recovered ( V ) classes. The

nonlinear incidence βSI / ϕ( I ), with ϕ(0) = 1 and ϕ′ ( I ) ≥ 0, generalizes saturated incidence βSI/ (1 + κ I) and nonmonotone

incidence capturing psychological effect βSI/ (1 + κ I 2 ) [23,24] . Along the work of [16] , Sahu and Dhar [17] further developed
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Table 1 

Notation description for model (1.2) and their values. 

Notation Description Units Range Baseline Source 

� Recruitment rate m 

−1 [0,6748] 130 Assumed 

μ Natural death rate m 

−1 – 9 . 815 × 10 −4 [25] 

1/ γ The mean infectious period m [0.1333,0.3333] 0.2333 [5,26–28] 

1/ ω Average time of immunity waning m [6,12.1655] 12.1655 [6,7] 

α Vaccination rate m 

−1 [0,1] 0 [5,7] 

ξ The recovery rate of exposed class 

due to natural immunity m 

−1 [3,30] 4.2857 fitted 

β The disease transmission coefficient m 

−1 · p −1 [0,1] 7 . 0219 × 10 −5 Fitted 

1/ σ The latent period m [0.0333,0.1667] 0.1116 Fitted 

κ The inhibition effect – [0,1] 1 . 3458 × 10 −13 Fitted 

q Fraction of recovered individuals 

from disease developing immunity – [0,1] 0.9287 Fitted 

S (0) Initial value for susceptible class p [0, 7 × 10 6 ] 1.2959 × 10 5 Fitted 

V (0) Initial value for vaccinated class p [0, 7 × 10 6 ] 2.7970 × 10 5 Fitted 

E (0) Initial value for exposed class p [0, 7 × 10 6 ] 10 Assumed 

I (0) Initial value for infectious class p – 23 [12] 

[Note: m, p represent month and person, respectively.] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a nonlinear SVEIS model with partial temporary immunity as follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= � − αS − βSI 

1 + κ I 
− μS + ωV + ( 1 − q ) γ I, 

dV 

dt 
= αS + qγ I + ξE − ( μ + ω ) V, 

dE 

dt 
= 

βSI 

1 + κ I 
− ( μ + σ + ξ ) E, 

dI 

dt 
= σE − ( μ + γ ) I, 

(1.2)

where susceptible class are vaccinated with certain vaccine at constant rate α, different from model (1.1) with a fraction

of vaccinated newborns (denoted by p ). We always assume that the same parameter represents the identical biological

meaning throughout this paper, and the detailed biological descriptions of the parameters for model (1.2) are demonstrated

in Table 1 . Note that [16,17] applied the geometric approach based on the second additive compound matrix theory of

[20] to the responding limiting systems and achieved global stability of the unique endemic equilibrium (EE) under the

vaccination reproduction number R v > 1 and some additional restrictions. More recently, Lu and Lu [18,19] improved the

classical geometric approach of [20–22] and generalized the geometric criterion on global-stability problem and applied it

to several nonlinear SEIRS models, successfully removing some restrict conditions on global stability of their EE. 

Borrowing the ideas of [16,17,23,24] , we establish the following SVEIS epidemic model with general nonlinear inci-

dence: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= ( 1 − p ) � − Sg ( I ) − μS + ωV, 

dV 

dt 
= p� + γ I + ξE − ( μ + ω ) V, 

dE 

dt 
= Sg ( I ) − ( μ + σ + ξ ) E, 

dI 

dt 
= σE − ( μ + γ ) I, 

(1.3)

in which, it is assumed that vaccine-induced, disease-acquired and natural immunity may last the nearly same time for

some diseases like influenza, and the differential infectious force function g possesses the following properties reflecting

some biological significances: 

(P1) g ∈ C : R + → R + , satisfies g(0) = 0 , g ( I ) > 0 for I > 0. 

(P2) g(I) /I ∈ C is monotonously nonincreasing for I > 0, and lim I→ 0 + (g(I ) /I ) := β < + ∞ . 

(P3) I | g ′ ( I )| ≤ g ( I ) for I > 0. 

It is worth highlighting that saturated and nonmonotone incidences in [23,24] , βS ln (1 + κ I) [29] and βSI/ (1 + κ I +√ 

1 + 2 κ I ) [30] , but not confined to them, fulfill (P1) - (P3) , thus we lift restrictions on monotonicity of g ( I ) in spite of the

introduction of (P3) . With this geometric criterion in [18] , we shall thoroughly address global threshold dynamics of models

(1.3) and (1.2) , characterized by their vaccination reproduction numbers. Incidentally, the unnecessary restrictions both in
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Fig. 2. The existence and uniqueness of positive real root for Eq. (2.2) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4 in [16] and Theorem 5.5 in [17] are completely removed since model (1.3) reduces to model (1.1) if g(I) = βI/ϕ(I)

and ξ = 0 . Of particular note is that we achieve global asymptotic stability for model (1.1) of [16] with nonmonotone inci-

dence reflecting psychological effect, which also reserves threshold dynamics. 

Furthermore, as an application of model (1.2) , the reported pH1N1 case data of Hong Kong China [12] are utilized to

estimate its parameters, aimed at accounting for the avoidance of the subsequent potential waves of the pandemic in 2010

(as predicted by WHO [10] ) with the pH1N1 vaccination programme. Meanwhile, several disease-control measures are eval-

uated in terms of global sensitivity analysis for the vaccination reproduction number. In particular, this study arrives at a

conclusion that joint usage of multiple control measures such as isolation, vaccination and treatment, can more effectively

cut down the peak of the waves and dramatically delay the arrival of the second wave at the same time. 

The outline of this paper is summarized as follows. In Section 2 , we offer insight into global threshold dynamics for

model (1.3) , including the existence, local and global asymptotic stability of its equilibria. Section 3 completely addresses the

global dynamics of model (1.2) . Section 4 performs parameter estimation and global sensitivity analysis for the vaccination

reproduction number of model (1.2) with the purpose of seeking for effective control measures. Finally, we close the paper

with a conclusion and discussion section. 

2. Global threshold dynamics for model (1.3) 

2.1. The existence of the equilibria 

For model (1.3) , one can easily obtain that the biologically feasible region 

� = 

{ 

(S, V, E, I) ∈ R 

4 
+ : N = S + V + E + I ≤ �

μ

} 

, 

is the positively invariant set by similar arguments in [16] . Apparently, the disease-free equilibrium (DFE) P 0 = (S 0 , V 0 , 0 , 0)

of model (1.3) always exists, where S 0 = [(1 − p) μ + ω]�/ [ μ(μ + ω)] , V 0 = p�/ (μ + ω) . Thus, by application of the next

generation matrix approach in [31] , the vaccination reproduction number (e.g., seeing [32,33] ) is calculated as 

R v = 

σ g ′ (0) S 0 
(μ + γ )(μ + σ + ξ ) 

= 

σβ�[(1 − p) μ + ω] 

μ(μ + ω)(μ + γ )(μ + σ + ξ ) 
, (2.1) 

clearly remaining the same with the model in [16] when ξ = 0 . 

By some direct but tedious algebra operations, it can be deduced that the I ∗ component in the EE P ∗ = (S ∗, V ∗, E ∗, I ∗) is
determined by the following equation 

G (I) := (S 0 − aI ) g(I ) − bI = 0 , for I ∈ [0 , S 0 /a ] , (2.2) 

where 

a := 

(μ + γ )(μ + σ + ξ + ω) + σω 

σ (μ + ω) 
, b := 

(μ + γ )(μ + σ + ξ ) 

σ
. 

In what follows, we are going to focus mainly on analyzing the positive real solution of Eq. (2.2) . A simple induction then

shows 

G 

′ (I) := (S 0 − aI ) g ′ (I ) − ag(I) − b. (2.3) 

It deduces from (P2) that G 

′ (0) = S 0 g 
′ (0) − b = b(R v − 1) . 

In the case of R v > 1 , together with G 

′ (0) > 0, G (0) = 0 and G (S 0 /a ) = −bS 0 /a < 0 , it can be revealed that G ( I ) > 0 as I is

sufficiently small, guaranteeing the existence of positive real root for Eq. (2.2) from Fig. 2 , denoted by I ∗. And its uniqueness

is verified by reduction to absurdity as follows. Provided that another positive solution I ∗ of (2.2) nearest to I ∗, if it exists,
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must satisfy G 

′ ( I ∗ ) ≥ 0 owing to the continuity of G ( I ). Actually, together with g ′ ( I ∗ ) ≤ g ( I ∗ )/ I ∗ deduced from (P3) , we arrive

at 

G 

′ (I ∗) := S ∗g ′ (I ∗) − ag(I ∗) − S ∗g(I ∗) 
I ∗

= −ag(I ∗) + S ∗
(

g ′ (I ∗) − g(I ∗) 
I ∗

)
< 0 , (2.4)

where one utilizes the equality b = S ∗g(I ∗) /I ∗ derived by the equations that the EE satisfies. An obvious contradiction exists

as shown in Fig. 2 . Thus, the positive solution I ∗ is unique, which can lead to the uniqueness of S ∗, V 

∗, E ∗ from the analysis

above. 

In the case of R v ≤ 1 , Eq. (2.2) must admit no positive solution. Otherwise, let I � be its smallest one. Combining G (0) = 0

and G 

′ (0) ≤ 0 yields that G ( I ) ≤ 0 for sufficiently small I . Since the function G ( I ) continuously increases to 0 from the non-

positive value, it is clear to see that G 

′ ( I � ) ≥ 0, which contradicts with G 

′ ( I � ) < 0 in (2.4) . 

To sum up, model (1.3) has a unique EE P ∗ if and only if (iff) R v > 1 . 

Theorem 2.1. For model (1.3) , a DFE P 0 always exists and the EE P ∗ exists uniquely iff R v > 1 . 

2.2. Local stability 

Theorem 2.2. (i) The DFE P 0 is local asymptotically stable (LAS) if R v < 1 , but becomes unstable if R v > 1 ; (ii) The EE P ∗ is LAS

iff R v > 1 . 

Proof. The Jacobian matrix of model (1.3) takes the following form of 

J = 

⎡ 

⎢ ⎣ 

−(μ + g(I)) ω 0 −Sg ′ (I) 
0 −(μ + ω) ξ γ

g(I) 0 −(μ + σ + ξ ) Sg ′ (I) 
0 0 σ −(μ + γ ) 

⎤ 

⎥ ⎦ 

. (2.5)

(i) The characteristic equation at P 0 is 

(λ + μ)(λ + μ + ω)[ λ2 + (2 μ + γ + σ + ξ ) λ + (μ + γ )(μ + σ + ξ )(1 − R v )] = 0 . (2.6)

Obviously, its all eigenvalues possess negative real parts when R v < 1 , that is, P 0 is LAS. If R v > 1 , there exists a positive

root, so the DFE becomes unstable. 

(ii) Calculating the characteristic equation at P ∗, one reaches 

(λ + μ)[(λ + a 1 )(λ + a 2 )(λ + a 3 ) + ωg(I ∗)(λ + a 4 ) − σ S ∗g ′ (I ∗)(λ + a 5 )] = 0 , (2.7)

where a 1 := μ + γ , a 2 := μ + σ + ξ , a 3 := μ + ω + g(I ∗) , a 4 := μ + γ + σ, a 5 := μ + ω. Clearly, λ1 = −μ < 0 . 

Case I . Let g ′ ( I ∗) > 0. One asserts that all eigenvalues of the following equation 

(λ + a 1 )(λ + a 2 )(λ + a 3 ) + ωg(I ∗)(λ + a 4 ) = σ S ∗g ′ (I ∗)(λ + a 5 ) (2.8)

satisfy Re λ < 0. Suppose, for contradiction, that there exists one eigenvalue ˜ λ with Re ̃ λ ≥ 0 . From (2.8) and (P3) , the follow-

ing contradiction is attained 

a 1 a 2 < 

∣∣∣( ̃ λ + a 1 )( ̃ λ + a 2 ) 
(

1 + 

g(I ∗) 
˜ λ + a 5 

)
+ 

ωg(I ∗)( ̃ λ + a 4 ) 

˜ λ + a 5 

∣∣∣ = σ S ∗g ′ (I ∗) ≤ σ S ∗g(I ∗) 
I ∗

= a 1 a 2 . 

Case II . Let g ′ ( I ∗) ≤ 0. Equality (2.8) is recast as λ3 + A 1 λ
2 + A 2 λ + A 3 = 0 . For i, j = 1 , 2 , 3 , the Routh-Hurwitz conditions can

be ensured by 

A 1 = a 1 + a 2 + a 3 > 0 , 

A 2 = a 1 a 2 + a 2 a 3 + a 1 a 3 + ωg ( I ∗) − σ S ∗g ’ ( I ∗) > 0 , 

A 3 = a 1 a 2 a 3 + ωg ( I ∗) a 4 − σ S ∗g ’ ( I ∗) a 5 > 0 , 

A 1 A 2 − A 3 = ( a 1 +a 2 +a 3 ) ( a 1 a 2 +a 2 a 3 + a 1 a 3 ) − a 1 a 2 a 3 + ωg ( I ∗) ( 2 μ + ξ + ω+ g ( I ∗) ) −σ S ∗g ’ ( I ∗) ( a 1 + a 2 + g ( I ∗) ) > 0 .

We thus infer that all eigenvalues obey Re λ < 0. Combining Cases I and II leads to local stability of P ∗ for R v > 1 . �

2.3. Global stability 

Theorem 2.3. The DFE P 0 of model (1.3) is GAS in � if R v ≤ 1 . 

Proof. By the first equation of (1.3) and S + V + E + I ≤ �/μ, it is easy to ascertain that 

dS 

dt 
≤ ( 1 − p ) � − μS + ωV ≤ ( 1 − p ) � − μS + ω 

(
�

μ
− S − E − I 

)

≤ [ ( 1 − p ) μ + ω ] �

μ
− ( μ + ω ) S = ( μ + ω ) ( S 0 − S ) , 

which asserts that S ≤ S 0 (similar to [4] ). Otherwise, let us suppose that S > S 0 , thus dS / dt < 0. It follows that S ≤ S 0 when

S (0) ≤ S , which is absurd as our assumption. Hence, our claim S ≤ S is valid. Observe that g ( I )/ I ≤ β for I > 0 can be
0 0 
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ensured by (P3) (seeing, e.g., [34] ). Construct Lyapunov function W (t) = E + (μ + σ + ξ ) I/σ, and its time derivative of W ( t )

along the solutions of model (1.3) is estimated as 

dW (t) 

dt 
= 

dE 

dt 
+ 

μ + σ + ξ

σ

dI 

dt 
= I 

(
S 

g(I) 

I 
− b 

)
≤ I(βS 0 − b) = bI(R v − 1) ≤ 0 

provided that R v ≤ 1 . From the LaSalle’s Invariance Principle [35] and local stability of P 0 in Theorem 2.2, we can derive its

global asymptotic stability for R v ≤ 1 . �

In the sequel, we shall employ the general criterion for global stability for autonomous differential equations developed

by [18] to establish global stability of the EE P ∗ of model (1.3) . A brief outline on this geometrical approach [18,20–22] is

presented as follows. 

Let us consider the nonlinear autonomous dynamical system: 

dx 

dt 
= f (x ) , x ∈ Q ⊂ R 

n , (2.9) 

where the function f (x ) ∈ C : Q → R 

n and Q is an open set. For (2.9), the solution with x (0 , x 0 ) = x 0 is defined as x ( t, x 0 )

and its equilibrium as x ∗. Moreover, let us assign M (x ) ∈ C 

2 : Q → R 

n , satisfying dim (∂ M /∂ x ) = m when M (x ) = 0 . We

assume that system (2.9) admits a n − m dimensional invariant manifold defined by � = { x ∈ R 

n |M (x ) = 0 } . 
The following three hypotheses are satisfied: 

(H1) � is simply connected. 

(H2) There is a compact absorbing set D ⊂ Q ⊂�. 

(H3) System (2.9) admits a unique equilibrium x ∗ in �. 

The general geometric criterion of Lu and Lu is recapped as follows. 

Lemma 2.1. (see Theorem 2.6 in [18] ). The unique equilibrium x ∗ of (2.9) is globally asymptotically stable (GAS) in � provided

that (H1) - (H3) and the following condition (C) hold. 

(C) For the coefficient matrix B ( x (0, x 0 )) of system (2.9) , there are a matrix C ( t ), a sufficiently large τ 1 > 0 and constants

ρ1 , ρ2 , . . . , ρn > 0 such that 

b ii (t) + 

∑ 

i � = j 

ρ j 

ρi 

| b i j (t) | ≤ c ii (t ) + 

ρ j 

ρi 

| c i j (t ) | , for ∀ t ≥ τ1 , ∀ x 0 ∈ D, (2.10) 

and 

lim 

t→∞ 

1 

t 

∫ t 

0 

(
c ii (t) + 

ρ j 

ρi 

| c i j (t) | 
)

ds = c̄ i < 0 , (2.11)

where b ij ( t ) and c ij stand for entries of matrices B ( x (0, x 0 )) and C ( t ), respectively. 

Denote the interior, the boundary of � by �̊ and ∂�, respectively. Uniform persistence in �̊ of model (1.3) for R v > 1

can be deduced from the instability of P 0 and P 0 ∈ ∂�. 

Theorem 2.4. Model (1.3) is uniform persistent in �̊ if R v > 1 . 

Theorem 2.5. The EE P ∗ of model (1.3) is GAS in �̊ if R v > 1 . 

Proof. The third additive compound matrix of J [22] for model (1.3) acquires the form 

J 

[3] (x ) = 

⎡ 

⎢ ⎣ 

−(ω + σ + ξ ) Sg ′ (I) −γ −Sg ′ (I) 
σ −(ω + γ ) ξ 0 

0 0 −(σ + ξ + γ ) ω 

0 −g(I) 0 −(ω + σ + ξ + γ ) 

⎤ 

⎥ ⎦ 

+ �1 , 

where �1 := diag {−(3 μ + g(I)) , −(3 μ + g(I)) , −(3 μ + g(I)) , −3 μ} . 
Assign M(x ) = S + V + E + I − �/μ with x = (S, V, E, I) ∈ R 

4 + . The invariant manifold for (1.3) is � = { x ∈ R 

4 + | M(x ) = 0 } .
Following [22] , it turns out to be N(x ) = ν(x ) = −μ and m = dim (∂ M /∂ x ) = 1 . In the sequel, let P (x ) = diag { I, E, V, S} and

I 4 ×4 be the 4 × 4 identity matrix. Then the coefficient matrix B (t) = P f P 
−1 + P J 

[3] (x ) P −1 − νI 4 ×4 reads 

B (t) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−(ω + σ + ξ ) 
SI g ′ (I ) 

E 
−γ I 

V 

−I g ′ (I ) 

σE 

I 
−(ω + γ ) 

ξE 

V 

0 

0 0 −(σ + ξ + γ ) 
ωV 

S 

0 −Sg(I) 

E 
0 −(ω + σ + ξ + γ ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ �2 , 

where � = diag {−(2 μ + g(I)) + I ′ /I, −(2 μ + g(I)) + E ′ /E, −(2 μ + g(I)) + V ′ /V, −2 μ + S ′ /S} . 
2 
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Meanwhile, model (1.3) can be recast into 

ωV 

S 
= 

S ’ 

S 
+ g ( I ) + μ − ( 1 − p ) �

S 
, 

γ I 

V 

= 

V 

’ 

V 

+ μ + ω − p�

V 

− ξE 

V 

, 

Sg ( I ) 

E 
= 

E ’ 

E 
+ μ + σ + ξ , 

σE 

I 
= 

I ’ 

I 
+ μ + γ . (2.12)

Note that Theorem 2.4 implies that there is a constant π0 > 0 such that π0 ≤ S, V, E, I ≤ �/ μ. It follows from (P1)

that there are constants l, L > 0 such that l ≤ g ( I ) ≤ L . Assign π := μπ0 / �. By I | g ′ ( I )| ≤ g ( I ) in (P3) and (2.12) , c i ( t ) are

respectively estimated as 

c 1 ( t ) = b 11 ( t ) + 

4 ∑ 

i =2 

∣∣b ij ( t ) ∣∣ = −( 2 μ + ω + σ + ξ + g ( I ) ) + 

I ’ 

I 
+ 

SI | g ’ ( I ) | 
E 

+ 

γ I 

V 

+ I 
∣∣g ’ ( I ) ∣∣

≤ −( 2 μ + ω + σ + ξ + g ( I ) ) + 

I ’ 

I 
+ 

Sg ( I ) 

E 
+ 

γ I 

V 

+ g ( I ) 

≤ −( 2 μ + ω + σ + ξ + g ( I ) ) + 

I ’ 

I 
+ 

(
E ’ 

E 
+ μ + σ + ξ

)

+ 

(
V 

’ 

V 

+ μ + ω − p�

V 

− ξE 

V 

)
+ g ( I ) 

≤ V 

’ 

V 

+ 

E ’ 

E 
+ 

I ’ 

I 
− ( pμ + ξπ ) � c 1 ( t ) , 

c 2 ( t ) = b 22 ( t ) + 

∑ 

i � =2 

∣∣b ij ( t ) ∣∣ = −( 2 μ + ω + γ + g ( I ) ) + 

E ’ 

E 
+ 

σE 

I 
+ 

ξE 

V 

≤ −( 2 μ + ω + γ + g ( I ) ) + 

E ’ 

E 
+ 

(
I ’ 

I 
+ μ + γ

)
+ 

(
V 

’ 

V 

+ μ + ω − p�

V 

− γ I 

V 

)

≤ V 

’ 

V 

+ 

E ’ 

E 
+ 

I ’ 

I 
− ( l + pμ + γπ) � c 2 ( t ) , 

c 3 ( t ) = b 33 ( t ) + 

∑ 

i � =3 

∣∣b ij ( t ) ∣∣ = −( 2 μ + σ + γ + ξ + g ( I ) ) + 

V 

’ 

V 

+ 

ωV 

S 

≤ −( 2 μ + σ + γ + ξ + g ( I ) ) + 

V 

’ 

V 

+ 

(
S ’ 

S 
+ g ( I ) + μ − ( 1 − p ) �

S 

)

≤ S ’ 

S 
+ 

V 

’ 

V 

− [ σ + γ + ξ + ( 2 − p ) μ] � c 3 ( t ) , 

c 4 ( t ) = b 44 ( t ) + 

∑ 

i � =4 

∣∣b ij ( t ) ∣∣ = −( 2 μ + σ + γ + ω + ξ ) + 

S ’ 

S 
+ 

Sg ( I ) 

E 

≤ −( 2 μ + σ + γ + ω + ξ ) + 

S ’ 

S 
+ 

(
E ’ 

E 
+ μ + σ + ξ

)

≤ S ’ 

S 
+ 

E ’ 

E 
− ( μ + ω + γ ) � c 4 ( t ) . 

Choose the matrix C ( t ) in Lemma 2.1 as C(t) = diag{ c 1 (t) , c 2 (t) , c 3 (t) , c 4 (t) } . It is easy to check that lim t→∞ 

∫ t 
0 c̄ i (s ) ds/t =

c̄ i < 0 , where c̄ 1 = −(pμ + ξπ ) , c̄ 2 = −(l + pμ + γπ) , c̄ 3 = −[ σ + γ + ξ + (2 − p) μ] , c̄ 4 = −(μ + ω + γ ) . By Lemma 2.1, the

EE is GAS in �̊. �

Remark 2.1. Let ξ = 0 and g(I ) = βI / (1 + κ I) , then model (1.3) reduces to the model with saturated incidence of [16] , which

retains global threshold dynamics from Theorem 2.5, improving Theorem 4 in [16] . More importantly, the sharp threshold

dynamics result is extended to the model with nonmonotone incidence capturing psychological effect of [16] . 

3. Global threshold dynamics for model (1.2) 

In this section, for simplicity, we take g(I) := βI/ (1 + κ I) , satisfying (P1), (P2) and 

(P3) ′ Ig ′ ( I ) ≤ g ( I ) for I > 0. 

Following the same reasoning as the proof of Theorems 2.1–2.2 in Subsections 2.1 –2.2 , one easily draws the following

conclusions on the existence, local stability of the DFE ˜ P 0 = ( ̃  S 0 , ̃  V 0 , 0 , 0) and the EE ˜ P ∗ = ( ̃  S ∗, ̃  V ∗, ̃  E ∗, ̃  I ∗) for model (1.2) , where
˜ S = (μ + ω)�/ [ μ(μ + α + ω)] , ˜ V = α�/ [ μ(μ + α + ω)] . 
0 0 
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Theorem 3.1. Model (1.2) always has a DFE ˜ P 0 and the EE ˜ P ∗ is unique if the vaccination reproduction number 

˜ R v = 

σ g ′ (0) ̃  S 0 
(μ + γ )(μ + σ + ξ ) 

= 

σβ�(μ + ω) 

μ(μ + α + ω)(μ + γ )(μ + σ + ξ ) 
> 1 . (3.1) 

Theorem 3.2. The DFE ˜ P 0 is LAS when ˜ R v ≤ 1 , and it is unstable but the EE ˜ P ∗ is LAS when ˜ R v > 1 . 

In what follows, we make a thorough inquiry into global stability of model (1.2) . Using the similar arguments as the

analysis of Theorems 2.3-2.4 in Subsection 2.3 can lead to global stability of the DFE and persistence of model (1.2) as

follows. 

Theorem 3.3. If ˜ R v ≤ 1 , the DFE ˜ P 0 is GAS in �. 

Theorem 3.4. If ˜ R v > 1 , model (1.2) is uniform persistent in �̊. 

In order to achieve global stability of the EE, we focus mainly on the significant differences and skip the repeated parts

with the proof of Theorem 2.3 in Subsection 2.3 . The coefficient matrix B ( t ) for model (1.2) is calculated as 

B (t) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−(α + ω + σ + ξ ) 
SI g ′ (I ) 

E 
−qγ I 

V 

−I g ′ (I ) + 

(1 − q ) γ I 

S 
σE 

I 
−(α + ω + γ ) 

ξE 

V 

0 

0 0 −(α + σ + ξ + γ ) 
ωV 

S 

0 −Sg(I) 

E 

αS 

V 

−(ω + σ + ξ + γ ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

˜ �2 , 

where ˜ �2 = diag {−(2 μ + g(I)) + I ′ /I, −(2 μ + g(I)) + E ′ /E, −(2 μ + g(I)) + V ′ /V, −2 μ + S ′ /S} . And model (1.2) can be trans-

formed into 

ωV 

S 
= 

S ’ 

S 
+ g ( I ) + μ + α − �

S 
− ( 1 − q ) γ I 

S 
, 

qγ I 

V 

= 

V 

’ 

V 

+ μ + ω − αS 

V 

− ξE 

V 

, 

Sg ( I ) 

E 
= 

E ’ 

E 
+ μ + σ + ξ , 

σE 

I 
= 

I ’ 

I 
+ μ + γ . (3.2) 

Clearly, g ( I ) meets (P1), (P2) and (P3) ′ , and g ′ ( I ) > 0 for I > 0. Uniform persistence ensures that there exists positive

constants π0 , l, L such that π0 ≤ S, V, E, I ≤ �/ μ, and l ≤ g ( I ) ≤ L . Let π := μπ0 / �. Two cases will be considered to

estimate c 1 ( t ). 

Case 1. g ′ (I) − (1 − q ) γ /S ≥ 0 . Employing (3.2), g ′ ( I ) > 0 and (P3) ′ results in 

c 1 ( t ) = −( 2 μ + α + ω + σ + ξ + g ( I ) ) + 

I ’ 

I 
+ 

SI | g ’ ( I ) | 
E 

+ 

qγ I 

V 

+ 

∣∣∣I g ’ ( I ) − ( 1 − q ) γ I 

S 

∣∣∣
≤ −( 2 μ + α + ω + σ + ξ + g ( I ) ) + 

I ’ 

I 
+ 

(
E ’ 

E 
+ μ + σ + ξ

)
+ 

(
V 

’ 

V 

+ μ + ω − αS 

V 

− ξE 

V 

)
+ g ( I ) 

≤ V 

’ 

V 

+ 

E ’ 

E 
+ 

I ’ 

I 
− ( α + απ + ξπ ) � c 1 ( t ) . 

Case 2. g ′ (I) − (1 − q ) γ /S < 0 . Similar proof in Theorem 2.3 gives S ≤ S 0 , being equivalent to μ + α − �/S ≤ αω/ (μ + ω) . By

g ′ ( I ) > 0, we can arrive at 

c 1 ( t ) ≤ −( 2 μ + α + ω + σ + ξ + g ( I ) ) + 

I ’ 

I 
+ 

Sg ( I ) 

E 
+ 

qγ I 

V 

+ 

( 1 − q ) γ I 

S 
− I g ’ ( I ) 

≤ −( 2 μ + α + ω + σ + ξ + g ( I ) ) + 

I ’ 

I 
+ 

(
E ’ 

E 
+ μ + σ + ξ

)

+ 

(
V 

’ 

V 

+ μ + ω − αS 

V 

− ξE 

V 

)
+ 

(
S ’ 

S 
+ g ( I ) + μ + α − �

S 
− ωV 

S 

)

≤ S ’ 

S 
+ 

V 

’ 

V 

+ 

E ’ 

E 
+ 

I ’ 

I 
−

(
μα

μ + ω 

+ ( α + ξ + ω ) π
)
� c 1 ( t ) . 

We can similarly infer that 

c 2 ( t ) = −( 2 μ + α + ω + γ + g ( I ) ) + 

E ’ 

E 
+ 

σE 

I 
+ 

ξE 

V 

= −( 2 μ + α + ω + γ + g ( I ) ) + 

E ’ 

E 
+ 

(
I ’ 

I 
+ μ + γ

)
+ 

(
V 

’ 

V 

+ μ + ω − αS 

V 

− qγ I 

V 

)



L. Wang, Z. Liu and C. Guo et al. / Applied Mathematics and Computation 390 (2021) 125648 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ V 

’ 

V 

+ 

E ’ 

E 
+ 

I ’ 

I 
− ( α + απ + qγπ) � c 2 ( t ) , 

c 3 ( t ) = −( 2 μ + α + σ + γ + ξ + g ( I ) ) + 

V 

’ 

V 

+ 

ωV 

S 

= −( 2 μ + α + σ + γ + ξ + g ( I ) ) + 

V 

’ 

V 

+ 

(
S ’ 

S 
+ g ( I ) + μ + α − �

S 
− ( 1 − q ) γ I 

S 

)

≤ S ’ 

S 
+ 

V 

’ 

V 

−
(

2 μ + σ + γ + ξ + ( 1 − q ) γπ + 

μα

μ + ω 

)
� c 3 ( t ) , 

c 4 ( t ) = −( 2 μ + σ + γ + ω + ξ ) + 

S ’ 

S 
+ 

αS 

V 

+ 

Sg ( I ) 

E 

= −( 2 μ + σ + γ + ω + ξ ) + 

S ’ 

S 
+ 

(
V 

’ 

V 

+ μ + ω − qγ I 

V 

− ξE 

V 

)
+ 

(
E ’ 

E 
+ μ + σ + ξ

)

≤ S ’ 

S 
+ 

V 

’ 

V 

+ 

E ’ 

E 
− ( γ + qγπ + ξπ ) � c 4 ( t ) . 

By applying Lemma 2.1, the above is concisely stated into Theorem 3.5. 

Theorem 3.5. The EE ˜ P ∗ of model (1.2) is GAS in �̊ if ˜ R v > 1 . 

Remark 3.1. An immediate consequence of Theorem 3.5 yields global threshold dynamics of model (1.2) , getting rid of the

unnecessary restrictions in Theorem 5.5 from [17] . Additionally, model (1.2) with the incidence satisfying (P1),(P2) and (P3) ′ ,
e.g., βS ln (1 + κ I ) [29] , βSI / (1 + κ I + 

√ 

1 + 2 κ I ) [30] , also reserves global threshold stability by the same proof. 

Remark 3.2. From the analysis in Sections 2 and 3 , it can be similarly verified that the following SVEIS model with tem-

porary immunity and nonlinear incidence satisfying (P1) - (P3) is a sharp threshold system characterized by its vaccination

reproduction number, ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

dS 
dt 

= � − αS − Sg ( I ) − μS + ωV, 

dV 
dt 

= αS + γ I + ξE − ( μ + ω ) V, 

dE 
dt 

= Sg ( I ) − ( μ + σ + ξ ) E, 

dI 
dt 

= σE − ( μ + γ ) I. 

(3.3)

4. An application of model (1.2) 

Vaccination was the most cost-effective intervention for mitigating the 2010 influenza A(H1N1) pandemic. On 28 Au-

gust 2009, WHO advised that the countries in the northern hemisphere should prepare for a second wave of pandemic

spread [10] . Fortunately, the pH1N1 vaccination programme for five priority groups was launched, such as medical work-

ers, pregnant women, people over 65 or with chronic illness, children aged between 6 months to 6 years [11] . Because

the susceptible individuals aged over 6 months were vaccinated with the pH1N1 vaccine instead of newborns and up to

75% of H1N1 infection was asymptomatic due to nature immunity [15] , model (1.2) is applied to illustrate that vaccination

effectively contained subsequent potential waves of the pandemic (H1N1) 2009 in Hong Kong China in this section. 

4.1. Data 

At the end of every month from May 2009 to October 2010, the pH1N1 case data of Hong Kong were released by official

website of Center for Health Protection, Hong Kong China (available at https://www.chp.gov.hk/sc/statistics/data/10/26/43/

416.html [12] ), and the data from May 2009 to June 2010 are chosen to fit the parameter values of model (1.2) owing to

its high smooth degree (see Fig. 1 ). Indeed, the prevalence level of from July to October 2010 showed the small fluctuations

and kept low (also seeing [8] ). The first wave of the pandemic failed to be avoided (see Fig. 1 ) since there was no available

vaccine against the novel influenza strain before 21 December 2009. It was on that day, the pH1N1 vaccination programme

for five priority groups was launched and started [11] to minimize any potential second wave and 4182 doses of pH1N1

vaccine were administered [36] . Notice that the vaccine recipients will develop immunity in about 15 days [7] (delayed

vaccination, e.g., [2] ), so the start time of generating vaccine-induced immunity can be approximated as 1 January 2010 as

shown in Fig. 3 (a). 

4.2. Parameter estimation 

The intervals or values of parameters and initial condition of model (1.2) are estimated (as shown in Table 1 ) and ex-

plained as follows. 

https://www.chp.gov.hk/sc/statistics/data/10/26/43/416.html
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Fig. 3. (a) Comparison of the reported pH1N1 case data in Hong Kong China and the simulated solution I ( t ) of model (1.2) ; (b) The second wave of the 

H1N1 pandemic is observed through simulation using the estimated parameter values if the pH1N1 vaccination programme had not been carried out. 

Table 2 

Model selection for the pH1N1 case data. 

Model AIC BIC AICc 

κ = 1 . 3458 × 10 −13 , q = 0 . 9287 113.0446 113.1240 113.7112 

κ = 0 , q = 0 . 9287 113.0446 113.1240 113.7112 

κ = 0 , q = 1 113.8155 113.8950 114.4822 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) According to Subsection 4.1 , we set vaccination rate α = 0 during the 2009 pandemic, but α in (0,1] during the 2010

pandemic from [5] . The vaccine effectiveness is up to 99% [37] , thus the vaccine is considered to be perfect. 

(b) Since life expectancy is about 83.74 years in Hong Kong in 2010 [25] , natural death rate μ = 30 / (83 . 74 × 365) =
9 . 8150 × 10 −4 per month (m 

−1 ). 

(c) Following [5,26–28] and [6,7] , the infectious duration varies from 4 to 10 days and the immunity period changes

in the scope of 180 days to 2 years, respectively, so 1 /γ ∈ [4 / 30 , 10 / 30] = [0 . 1333 , 0 . 3333] and 1/ ω ∈ [6, 24.3333].

Let us take the infectious duration and the immunity period as 7 days [27,28] and 1 years [6] , respectively, then

1 /γ = 0 . 2333 m and 1 /ω = 12 . 1655 m. 

(d) The latent period (1/ σ ) ranges from 1 day to 5 days according to Refs [5,26–28] ., then 1/ σ ∈ [0.0333, 0.1667]. From

[5,26,28] , it may be realistic for the influenza A(H1N1) to consider that exposed individuals recover after 1–10 days

due to natural immunity, namely, ξ in [3,30]. It is not hard to obtain that the values of parameters q, β and κ belong

to [0,1] based on some existing works (e.g., [17,23] ). 

(e) The number of births of Hong Kong in 2009 [38] was 8.21 × 10 4 per year, namely, 6748 m 

−1 . Considering that vast

majority of newborns were taken protective measures, about 2% of the number of births is chosen as recruitment rate

of S class, so � = 6748 × 2% = 130 m 

−1 . The number of total population of Hong Kong during 2009–2010 [38] ) was

about 7.0 × 10 6 , thus N(0) = S(0) + V (0) + E(0) + I(0) ≤ 7 × 10 6 . Together with the case data [12] , the initial value

I(0) = 23 is fixed. And we assume that E(0) = 10 . 

Above all, the values of the remaining parameters β , ξ , σ , q, κ and the initial values S (0), V (0) are estimated (seeing

Table 1 ) with the 8 cases data from May to December 2019 by the DEDiscover simulation tool [39] , where we choose the

method of Hybrid DESQP Optimization Algorithm, combining global differential evolution and local sequential quadratic

programming. From the parameter estimation results above, the values of κ = 1 . 3458 × 10 −13 , q = 0 . 9287 tend to 0 and 1,

respectively. This entails that several standard model selection criteria are employed to evaluate the superiority of mod-

els fitting the data [40] , including Akaike information criterion (AIC) and Bayesian information criterion (BIC), and their

variations such as AICc, with their smaller values corresponding to a better model. It can be observed from Table 2 that

model (1.2) with κ = 0 and q = 0 . 9287 is selected as the best model by the criteria above, and its simulation results are

presented in Fig. 3 (a). This suggests that the simple mass action incidence βSI may appropriately reflect the short-term

transmission process of the emerging influenza A(H1N1) virus and partial temporary immunity should be incorporated into

the influenza models. Furthermore, we analyze the error of fitting to evaluate the performances and reliability of model

(1.2) with κ = 0 and q = 0 . 9287 , and MAPE (the mean absolute percentage error) and RMSPE (the root mean square per-

centage error) are computed as MAPE = 37.36%, RMSPE = 6.76%, respectively. Based on the criteria of MAPE and RMSPE in

[41,42] , our model can yield reasonable forecasting results. Lastly, from Table 1 it can be checked that the latent period

1 /σ = 0 . 1116 m = 3 . 3482 days and 1 /ξ = 1 / (4 . 2857 m 

−1 ) = 7 days are in agreement with the reality. 
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Fig. 4. Sensitivity analysis: (a) PRCC values for the vaccination reproduction number ˜ R v ; (b) β is decreased by 10%, (c) α is increased by 10% and (d) γ is 

increased by 10% of their baseline values in Table 1 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of parameter estimation above yield that the vaccination reproduction number of 2009 is computed into
˜ R v = 1 . 4675 > 1 , which is consistent with the conclusion in [28,43] (ranging from 1.2 to 2.3). From Theorems 3.4 and 3.5,

the disease may be persistent and become endemic. Without vaccination, as forecasted by WHO [10] , the second wave is

indeed observed through simulation using the estimated parameter values (see Fig. 3 (b)), thus vaccination is imperative

if the vaccine is available. Furthermore, vaccination rate α = 0 . 3527 is estimated with the case data from January to June

2010 (other parameter values remain the same with Table 1 , and initial condition (93492,312020,627,1287) is the simulation

result in December 2009, corresponding to ˜ R v = 0 . 2801 < 1 , such that the pandemic was contained quickly, as proved in

Theorem 3.3 and shown in Fig. 3 (a). 

4.3. Sensitivity analysis 

The vaccination reproduction number ˜ R v of model (1.2) , measuring the average number of secondary cases that are

caused when one index case is introduced into a disease-free population [32,33] in which a vaccination programme is

carried out, may determine the transmissibility, severity and outcome of the pandemic. In order to seek for effective disease-

control measures, we therefore shall be concerned with the effects of input parameters ω, β , α, γ , ξ on 

˜ R v . Based on Latin

Hypercube Sampling (LHS) and partial rank correlation coefficients (PRCCs) [44] , global uncertainty and sensitivity analysis

for ˜ R v is conducted to reveal the influence degree on model outcomes. These interesting parameters are considered to obey

normal distributions with means coming from baseline values given in Table 1 . And their PRCC values are computed through

50 0 0 simulations per run and demonstrated in Fig. 4 (a) and Table 3 . 

Finally, numerical simulations are carried out to evaluate the effectiveness of disease-control measures. In Table 3 , input

parameters β , α, ω, γ , ξ are ranked in descending order according to their influences on new infections. In fact, it seems

difficult to prolong immunity duration related to the parameter ω. For this reason, we only consider the impacts of param-

eters β , α and γ . In detail, β has positive impact on 

˜ R v and α, γ have negative impacts on it. Thus, we decrease the value

of β by 10% and increase the value of γ by 10%, respectively. As discussed above, vaccination was such an effective health

intervention, that the H1N1 pandemic was successfully curbed in 2010. In consideration of frequent outbreaks of current
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Table 3 

PRCC values for ˜ R v , which are ranked from the most sensitive to the least. 

Parameter Mean Standard deviation PRCC p-value 

β 7 . 0219 × 10 −5 2 . 3406 × 10 −5 0.9176 0 

α 0.3527 0.1175 −0 . 8824 0 

ω 0.0822 0.0137 0.6496 0 

γ 4.2857 0.4286 −0 . 5418 0 

ξ 4.2857 0.4286 −0 . 3103 0 . 1979 × 10 −110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

seasonal flu (including influenza A(H1N1), B and C) epidemics in many countries, such as the United States [9] and China

with low vaccination rate, it may be interesting and significant to assume that the vaccine is available and vaccination is

carried out at the begin of the pandemic. 10% and 20% of vaccination rate α = 0 . 3527 are used to study the effect of vac-

cination on the pandemic. And the other parameter values and initial values of Table 1 are fixed. Simulation results are

presented in Fig. 4 (b)-(d). 

Undoubtedly, reducing the disease transmission coefficient β , such as epidemic propaganda, isolation, sterilization and 

wearing a mask, cuts down the peak of the first wave and delays the arrival of the second wave, but its two peak values

fail to decrease obviously even though parameter β is the first sensitive, seeing Fig. 4 (b). On the other hand, increasing

vaccination rate α and shortening the disease course of disease γ (e.g., antiviral therapy) lower more dramatically the peak

values of the first and second waves than reducing β , but the peak of the second wave arrives much earlier than reducing β
(as shown in Fig. 4 (c) and (d)). Therefore, it is possible for policymaker to use multiple control measures jointly during the

influenza pandemic. It is also acknowledged that timely vaccination is particularly effective at reducing the outbreak peaks

than the other two measures. 

5. Conclusion and discussion 

Immunization has been bringing mankind great success to prevent the disease transmission every year [2–8,1] , and a long

latent period of infectious disease may generate dramatically different model prediction and thus allows of no to neglect

[26] . What’s more, nonlinear incidence can reproduce the inhibition effect from behavioral changes of individuals and the

impact of other factors like severity and stage of the infection [16,17,45] . The current work formulates an SVEIS model with

vaccination, latency, nonlinear incidence and temporary immunity and establishes its global threshold stability by a novel

geometric criterion in [18] . Most pointedly, the open questions on global threshold stability of their EE for two nonlinear

SVEIS models with saturated incidence in [16,17] are also well addressed. Inspired by [18] , the introduction of the property

(P3) on the infectious force function g ( I ) leads us to successfully achieve global threshold dynamics for the SVEIS models

with nonmonotone incidence reflecting psychological effect. Furthermore, let g(I) = βI/ϕ(I) , then an application of Theorem

2.5 yields that model (1.1) is a sharp threshold system provided that ϕ( I ) meets ϕ(0) = 1 and 0 ≤ I ϕ′ ( I ) ≤ 2 ϕ( I ), such as

ϕ(I) = 1 + κ I r for 0 < r ≤ 2. 

In 2009, the novel influenza A(H1N1) virus caused the first pandemic of 21st century. We apply model (1.2) to illuminate

the avoidance of the potential second wave of the pandemic (H1N1) 2009 in Hong Kong, China (as predicted by [10] ) with

the pH1N1 vaccination programme, and it is revealed that timely vaccination is more effective at lowering the outbreak

peaks than other measures. This offers solid support for implementation of immunization strategy to cope with current

global seasonal influenza burden, measles cases surge and COVID-19 pandemic if the vaccines are available. 

This research is also subject to several limitations as follows. In details, observe that HBV vaccine is administered to both

newborns and susceptible individuals, so both two vaccination ways can be incorporated into these SVEIS models, which, to-

gether with [4] we guess, can still preserve the threshold dynamics since insights provided by several SVEIS models studied

above, can inform us that vaccination for either newborns or susceptible individuals and temporary immunity fail to change

their threshold stability (see Theorems 2.5, 3.5 and Remark 3.2 ). Additionally, we just consider the nonlinearity of incidence

rate on I , perfect vaccines, constant total population and postulate that vaccine-induced and disease-acquired immunity last

the same time. It would be interesting to introduce more general incidence S ϱf ( I ) ( ϱ > 0), distinct vaccinated class ( V ) and

recovered class ( R ), incomplete vaccination and varying total population size (e.g., [4,18,19,21,45] ) to improve the accuracy

of model prediction. Certainly, more analytical techniques are needed, and these issues are left as future investigations. 
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